

ETA-Danmark A/S Göteborg Plads 1 DK-2150 Nordhavn Tel. +45 72 24 59 00 Fax +45 72 24 59 04 Internet www.etadanmark.dk Authorised and notified according to Article 29 of the Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011

European Technical Assessment ETA-23/0591 of 2023/08/21

I General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011: ETA-Danmark A/S

Trade name of the construction product:	PESF PRO Injection anchor
Product family to which the above construction product belongs:	Bonded anchor with anchor rod for use in non- cracked concrete. Sizes: M8-M10-M12-M16
Manufacturer:	TOO Energon Service Uralsk, Chapaeva str., bld. 22 Kazakistan Internet www.energon.asia
Manufacturing plant:	TOO Energon Service Manufacturing Plant I
This European Technical Assessment contains:	19 pages including 14 annexes which form an integral part of the document
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of:	EAD 330499-01-0601 Bonded fasteners for use in concrete

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (except the confidential Annexes referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product

Technical description of the product

The PESF PRO Injection anchor is a bonded anchor (injection type) consisting of an injection mortar cartridge equipped with a special mixing nozzle and threaded anchor rod of the sizes from M8 to M16 made of:

- galvanized carbon steel,
- stainless steel A4-70, A4-80 or high corrosion resistant stainless steel with hexagon nut and washer.

The threaded rod is placed into a drilled hole previously injected (using an applicator gun) with a mortar with a slow and slight twisting motion. The anchor rod is anchored by the bond between rod, mortar and concrete.

The threaded rod is available for all diameters with three types of tip end a one side 45° chamfer, a two-sided 45° chamfer or a flat. The threaded rods are either delivered with the mortar cartridges or commercial standard threaded rods purchased separately. Each mortar cartridge is marked with the identifying mark of the producer and with the trade name. The mortar cartridges are available in different sizes.

The anchor in the range of M8 to M16 and the mortar cartridges corresponds to the drawings given in the Annex A1 to A4.

The characteristic material values, dimensions and tolerances of the anchors not indicated in Annexes shall correspond to the respective values laid down in the technical documentation¹ of this European Technical Assessment.

The anchors are intended to be used with embedment depth given in Annex A2, Table A1. For the installed anchor see Figure given in Annex A1. The intended use specifications of the product are detailed in the Annex B1.

2 Specification of the intended use in accordance with the applicable European Assessment Document (Hereinafter EAD)

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B1 to B6.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the anchor of 50 years.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

¹ The technical documentation of this European Technical Assessment is deposited at ETA-Danmark and, as far as relevant for the tasks of the Notified bodies involved in the attestation of conformity procedure, is handed over to the notified bodies.

3 Performance of the product and references to the methods used for its assessment

3.1 Characteristics of product

Mechanical resistance and stability (BWR 1):

The essential characteristics are detailed in the Annex from C1 to C2.

Safety in case of fire (BWR 2):

The essential characteristics are detailed in the Annex C3.

Hygiene, health and the environment (BWR3):

No performance assessed

Safety in use (BWR4):

For basic requirement Safety in use the same criteria are valid for Basic Requirement Mechanical resistance and stability (BR1).

Other Basic Requirements are not relevant.

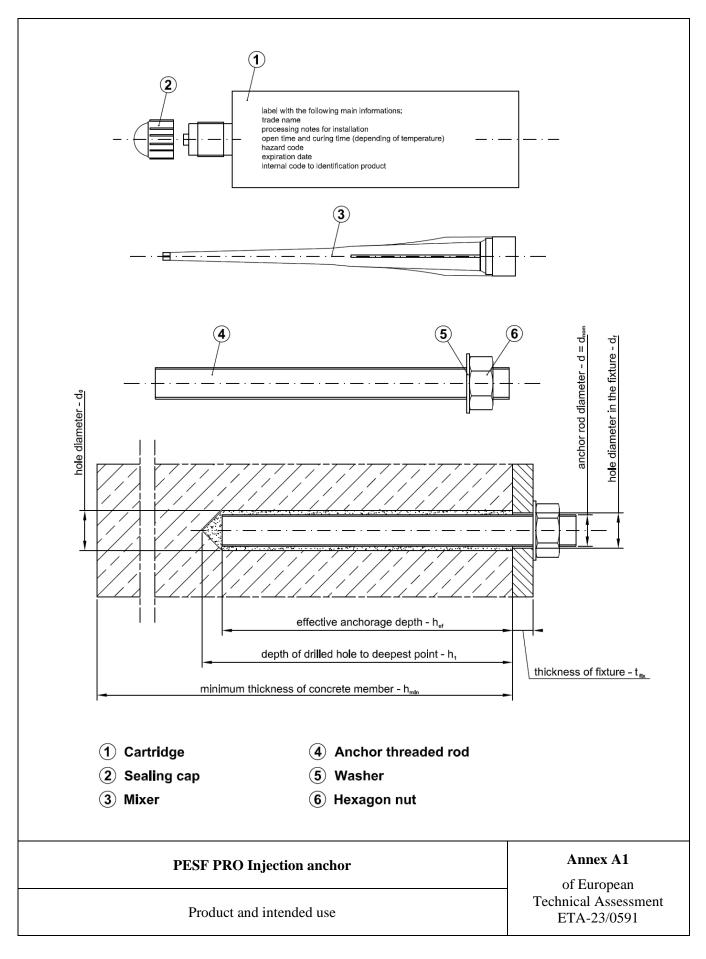
3.2 Methods of assessment

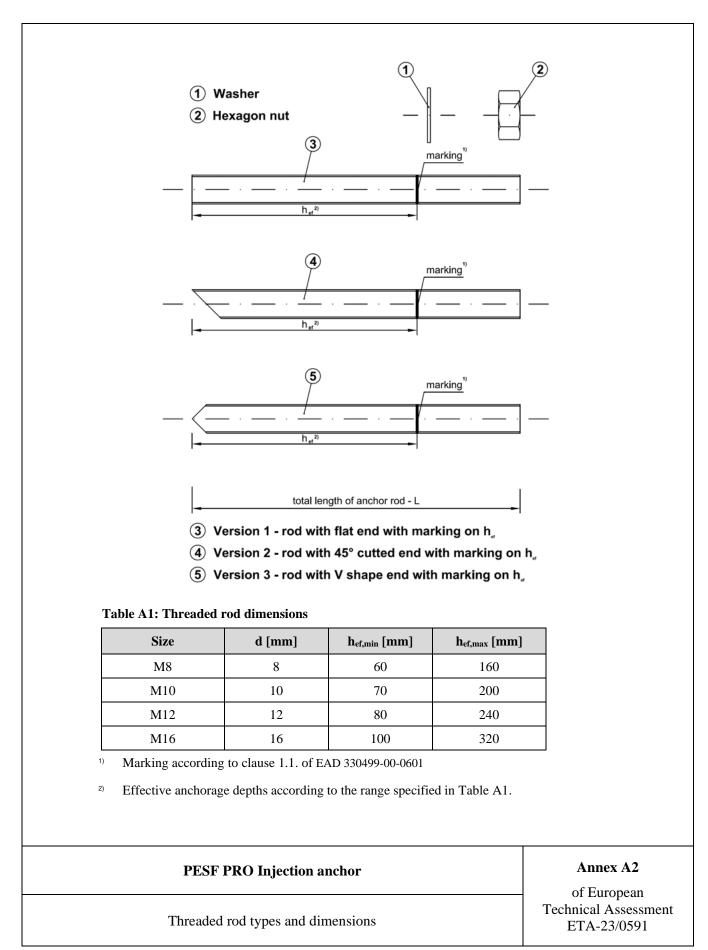
The assessment of fitness of the anchor for the intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 has been made in accordance with the EAD 330499-01-0601 Bonded fasteners for use in concrete.

4 Attestation and verification of constancy of performance (AVCP)

4.1 AVCP system

According to the decision 96/582/EC of the European Commission, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 1.


5 Technical details necessary for the implementation of the AVCP system, as foreseen in the applicable EAD


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark prior to CE marking.

Issued in Copenhagen on 2023-08-21 by

Thorostern

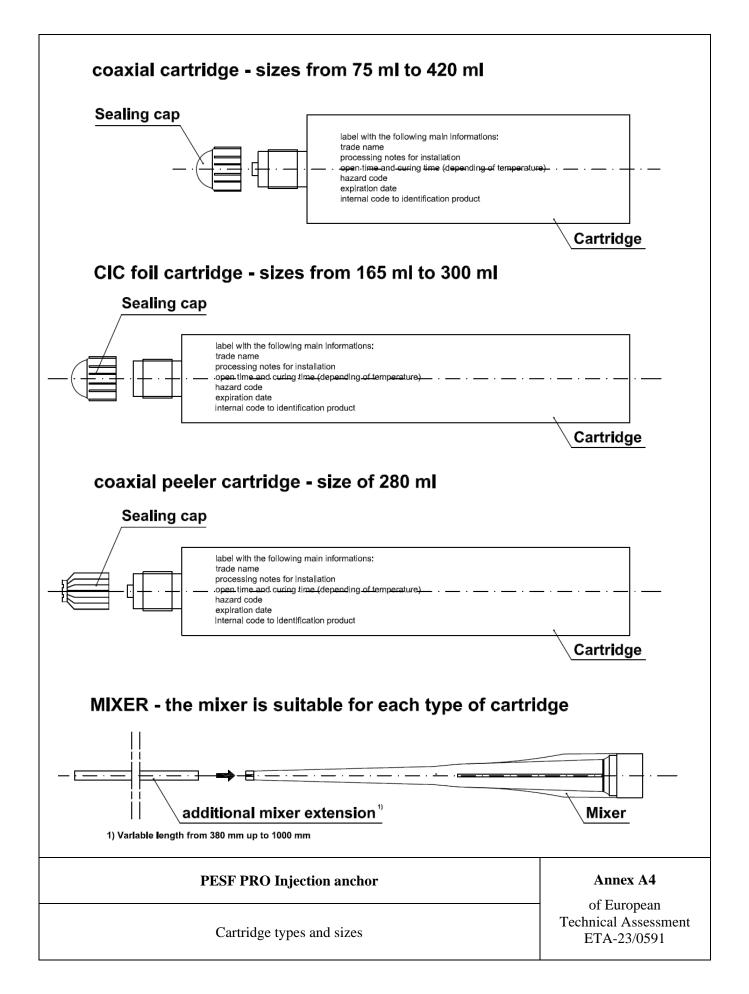
Managing Director, ETA-Danmark A/S

		Designation		
	Steel:			
Part zinc plated ≥ 5 μm acc. to EN ISO 4042 hot dipped galvanized ≥ 45 μm EN ISO 10684		Stainless steel A4	High corrosion resistance stainless steel (HCR)	
Threaded rod	Steel property class from 4.8 to 8.8, acc. to EN ISO 898-1	Material 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062 acc. to EN 10088-1; property class 50, 70 or 80 acc. to EN ISO 3506-1	Material 1.4529 / 1.4565, acc. to EN 10088-1; property class 50, 70 or 80 acc. to EN ISO 3506-1	
Washer EN ISO 7089	Steel acc. to corresponding to threaded rod material	Material 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062 acc. to EN 10088-1; corresponding to threaded rod material	Material 1.4529 / 1.4565, acc. to EN 10088-1; corresponding to threaded rod material	
Hexagon nut	Steel, property class from 4 to 8 acc. to EN 898-2; corresponding to threaded rod material	Material 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062 acc. to EN 10088-1; property class 50, 70 or 80 acc. to EN ISO 3506-1	Material 1.4529 / 1.4565, acc. to EN 10088-1; property class 50, 70 or 80 acc. to EN ISO 3506-1	

Commercial standard threaded rods with:

- material and mechanical properties according to Table A2,
- _ confirmation of material and mechanical properties by inspection certificate 3.1 according to EN-10204:2004,
- marking of the threaded rod with the embedment depth.

Table A3: Injection mortar


Product	Composition	
PESF PRO Injection anchor	Mortar resin styrene-free, hardener, filler	
two components injection mortar ⁾		

PESF PRO Injection anchor

Annex A3

of European **Technical Assessment** ETA-23/0591

Materials

Use:

The anchors are intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 of Regulation 305/2011 (EU) shall be fulfilled and failure of anchorages made with these products would compromise the stability of the works, cause risk to human life and/or lead to considerable economic consequences.

Anchors subject to:

- Static and quasi-static loads: sizes from M8 to M16.

Base materials:

- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum to C50/60 at maximum according to EN 206-1.
- Non cracked concrete.

Temperature range:

The anchors may be used in the following temperature range: a) -40° C to $+50^{\circ}$ C (max. short term temperature $+50^{\circ}$ C and max. long term temperature $+40^{\circ}$ C).

Use conditions (Environmental conditions):

- Elements made of galvanized steel may be used in structures subject to dry internal conditions only.
- Elements made of stainless steel may be used in structures subject to dry internal conditions and also in concrete subject to external atmospheric exposure (including industrial and marine environment) or exposure in permanently damp internal conditions if no particular aggressive conditions exist. Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).
- Elements made of high corrosion resistant steel may be used in structures subject to dry internal conditions and also in concrete subject to external atmospheric exposure or exposure in permanently damp internal conditions or in other particular aggressive conditions. Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Installation:

The anchors may be installed in:

- Dry or wet concrete (use category I1): sizes from M8 to M16.
- Installation direction D3 (downward and horizontal and upwards installation): sizes from M8 to M16.
- The anchor is suitable for hammer drilled holes: sizes from M8 to M16.

Proposed design methods:

- Static and quasi-static load: EN 1992-4

PESF PRO Injection anchor

Annex B1

of European Technical Assessment ETA-23/0591

Intended use - Specification

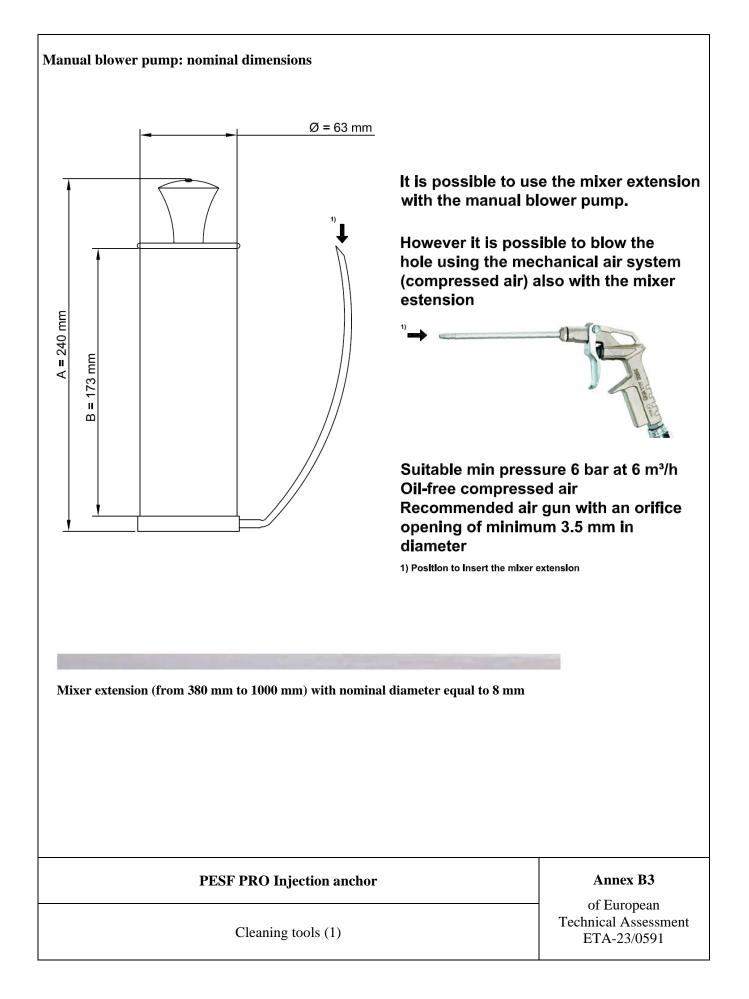
Table B1: Installation data

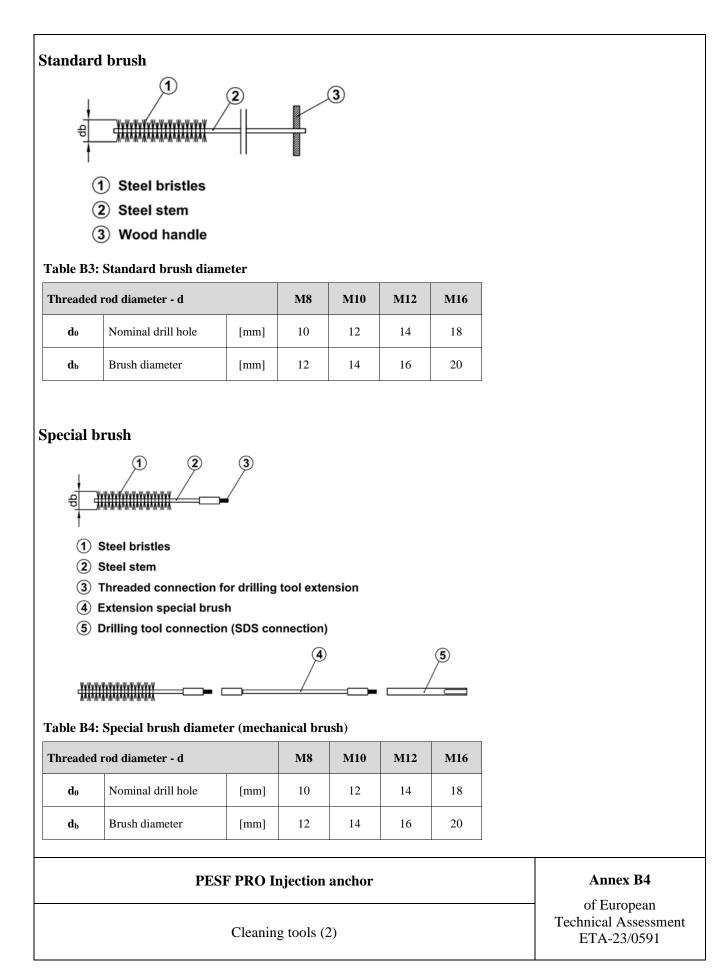
Size		M8	M10	M12	M16
Nominal drilling diameter	d ₀ [mm]	10	12	14	18
Maximum diameter hole in the fixture	d _{fix} [mm]	9	12	14	18
Embodmont donth	h _{ef,min} [mm]	60	70	80	100
Embedment depth	h _{ef,max} [mm]	160	200	240	320
Depth of the drilling hole	h ₁ [mm]	h _{ef} + 5 mm			
Minimum thickness of the slab	h _{min} [mm]	$h_{ef}+30~mm; \geq 100~mm \qquad \qquad h_{ef}+2d_0$			$h_{ef}+2d_0 \\$
Torque moment	T _{inst} [Nm]	10	20	40	80
Thickness to be fixed	t _{fix,min} [mm]		>	» O	
I nickness to be fixed	t _{fix,max} [mm]	< 1500			
Minimum spacing	S _{min} [mm]	40	50	60	75
Minimum edge distance	C _{min} [mm]	40	50	60	75

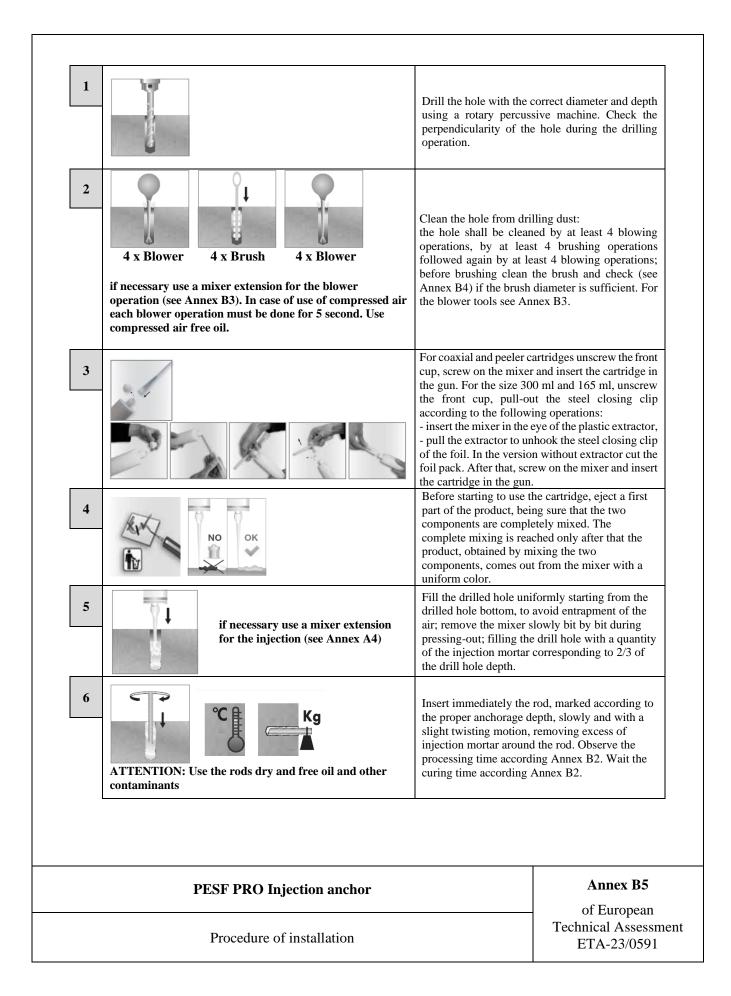
Table B2: Minimum curing time ¹⁾

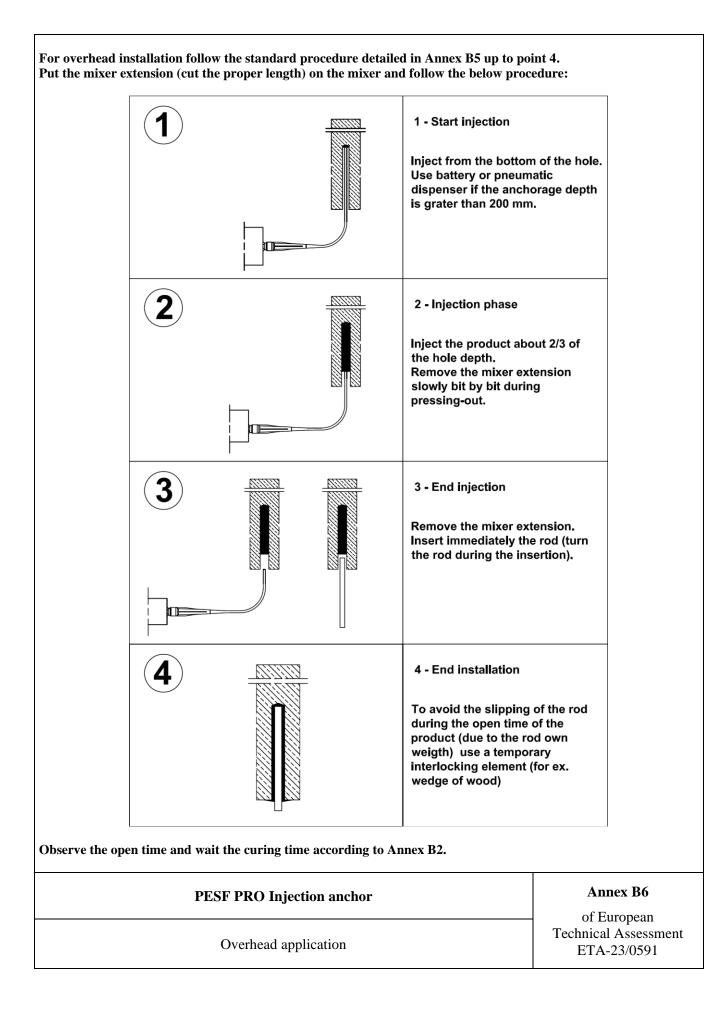
Concrete temperature	Processing time	Minimum curing time ³⁾
0°C ²⁾	25 min	180 min
5°C ²⁾	15 min	120 min
10°C	12 min	90 min
15°C	8 min	60 min
20°C	6 min	45 min
25°C	4 min	30 min
30°C	3 min	20 min

the minimum time from the end of the mixing to the time when the anchor may be torque or loaded (whichever is longer). 1)


2) 3) minimum resin temperature recommended, for injection between 5°C and 0°C, equal to 10°C. minimum curing time for dry and wet conditions.


PESF PRO Injection anchor


Annex B2


of European **Technical Assessment** ETA-23/0591

Intended use - Installation data

ESSENTIAL CHARACT	TERISTICS	PERFORMANC	E			
Installation parameters		M8	M10	M12	M16	
d [mm]		8	10	12	16	
d ₀ [mm]		10	12	14	18	
d _{fix} [mm]		9	12	14	18	
h ₁ [mm]			h _{ef} + 1	5 mm	1	
h _{min} [mm]					$h_{ef} + 2d_0$	
T _{inst} [Nm]		10	20	40	80	
	Min		>	0	•	
t _{fix} [mm]	Max		≤150	0 mm		
S _{min} [mm]		40	40	40	50	
C _{min} [mm]		40	40	40	50	
$\gamma_2 = \gamma_{inst}$ [-] Category 1 – for	r tensile and shear load		1,	00		
Characteristic resistance		M8	M10	M12	M16	
	ior tension load	1010	1110	17114	1110	
Steel failure ¹⁾		<u> </u>	·	1 1 1	· (° 1 · 4 · · ·	
N _{Rk,s} [kN]		Characteristic re	sistance according to th	e design method spe	ecified in Annex	
Concrete cone failure				1	· · · · · · · · · · · · · · · · · · ·	
N _{Rk,c} [kN]		Characteristic re	sistance according to th		ecified in Annex	
s _{cr,N} [mm]				lef		
c _{cr,N} [mm]			1.5			
kurc,N [-]		Characteristic re	sistance according to th	e design method spe	ecified in Annex I	
Combined pullout and co	oncrete cone failure					
$\tau_{Rk,ucr} [N/mm^2]$ concrete C2	20/25	12	12	11	9	
Temperature range -40°C/-	$+50^{\circ}C (T_{mlp} = +40^{\circ}C)$	12	12	11	,	
ψc,ucr C30/37 [-]			1,	04		
ψ _{c,ucr} C40/50 [-]			1,07			
ψ _{c,ucr} C50/60 [-]		1,09				
Splitting failure						
	for $h = h_{min}$	$S_{cr,sp} = 4 h_{ef}$				
_		$S_{cr,sp} = 4 \text{ her}$ $S_{cr,sp} = \text{interpolated value}$				
-	$ \begin{array}{l} \text{if } h_{\min} \leq h < 2 \ h_{ef} \\ \hline \end{array} $					
	if $h \ge 2 h_{ef}$	$S_{cr,sp} = S_{cr,Np} = 20$	d $(\tau_{Rk,ucr}/7,5)^{0.5} \le 3$ here			
C _{cr,sp} [mm]			0,5 \$			
Resistance for shear load		M8	M10	M12	M16	
Steel failure without leve	r arm ¹⁾	1				
V _{Rk,s} [kN]		Characteristic re	sistance according to th	e design method spe	ecified in Annex 1	
k7 [-]]			
Steel failure with lever an	·m ¹⁾	1				
$M^{0}_{Rk,s}$ [kN]		Characteristic rea	sistance according to th	e design method spe	cified in Annex l	
Concrete pry-out failure						
$k = k_3 = k_8 [-]$			2	2		
Concrete edge failure						
V _{Rk,c} [kN]		Characteristic re-	sistance according to th	e design method spe	cified in Annex I	
d _{nom} [mm]		8	10	12	16	
l _f [mm]		0			10	
11 [111111]		1	h	et		

PESF PRO Injection anchor

Performance for static and quasi-static loads: Resistances

Annex C1 of European Technical Assessment ETA-23/0591

ESSENTIAL CHARACTERISTICS	PERFORMANCE	2		
Displacement under service load Tensile load	M8	M10	M12	M16
F_{unc} [kN] for concrete from C20/25 to C50/60	9,5	13,8	16,9	23,6
δ _{N0,unc} [mm]	0,30	0,30	0,35	0,35
δ _{N∞,unc} [mm]	0,73			
Displacement under service load Shear load	M8	M10	M12	M16
Func [kN] for concrete from C20/25 to C50/60	10,5	16,6	24,1	44,8
δv0,unc [mm]	2,00	2,00	2,00	2,00
$\delta_{V\infty,unc}$ [mm]	3,00			

Note: Design method according to Annex B1.

PESF PRO Injection anchor

Performance for static and quasi-static loads: Displacements

Annex C2 of European Technical Assessment ETA-23/0591

ESSENTIAL CHARACTERISTICS	PERFORMANCE		
Resistance to fire	NPA		
Table C4: Reaction to fire			
ESSENTIAL CHARACTERISTICS	PERFORMANCE		
Reaction to fire	In the final application the thickness of the mortar layer is about 1 to 2 mm and most of the mortar is material classified class A1 according to EC Decision 96/603/EC. Therefore, it may be assumed that the bonding material (synthetic mortar or a mixture of synthetic mortar and cementitious mortar) about the meta anchor in the end use application do not make any contribution to fire growth or to the fully developed fire and they have no influence on the smoke hazard.		

Performance for exposure to fire

ETA-23/0591

Table C5: Terminology and symbols

ERMINOI	OGY AND SYMBOLS
	Diameter of anchor bolt or thread diameter Drill hole diameter
ix	Diameter of clearance hole in the fixture
f	Effective anchorage depth
f	Depth of the drilling hole
nin	Minimum thickness of concrete member
nin nst	Torque moment to installation
nst K	Thickness to be fixed
nin	Minimum allowable spacing
nin	Minimum allowable edge distance
nin rc,N [-]	Factor for concrete cone in uncracked concrete
rc,N [-]	Characteristic spacing between two different anchors for the concrete cone failure
r,N	Characteristic edge distance between two different anchors for the concrete cone failure
r,sp	Spacing for ensuring the transmission of the characteristic tensile resistance of a single anchor without spacing and edge effects in
r,sp	case of splitting failure
r,sp	Edge distance for ensuring the transmission of the characteristic tensile resistance of a single anchor without spacing and edge
r,sp	effects in case of splitting failure
łk,s	Characteristic tension resistance for steel failure
lk,c	Characteristic tension resistance for societ and the failure
kk,s	Characteristic shear resistance for steel failure without lever arm
KK,S	Ductility factor for steel failure in shear load
0 Rk,s	Characteristic shear resistance for steel failure with lever arm
RK,S	Characteristic shear resistance for concrete edge failure
_{om} [mm]	Outside diameter of fastener
[mm]	Parameter for evaluation of concrete edge failure
k,ucr	Characteristic bond resistance in un-cracked concrete class C20/25
$= \gamma_{inst}$	Partial safety factors for installation
	Increasing factor for un-cracked concrete
.,ucr = k ₃ = k ₈ [-]	Factor for concrete pry-out failure
- K3- K8 [-]	Service load in un-cracked (ucr) or cracked concrete (cr) in tensile or shear load
	Short term displacement under service load in un-cracked (uncr) or cracked concrete (cr) for tensile (N) or shear load (V)
)	Long term displacement under service load in un-cracked (uncr) of cracked concrete (cr) for tensile (N) of shear load (V)
PA	No declared performance

PESF PRO Injection anchor

Annex C4 of European Technical Assessment ETA-23/0591

Terminology and symbols